Search results for "Solvable group"
showing 10 items of 50 documents
Inequalities for character degrees of solvable groups
1986
Derived length and character degrees of solvable groups
2003
We prove that the derived length of a solvable group is bounded in terms of certain invariants associated to the set of character degrees and improve some of the known bounds. We also bound the derived length of a Sylow p-subgroup of a solvable group by the number of different p-parts of the character degrees of the whole group.
On large orbits of subgroups of linear groups
2019
The main aim of this paper is to prove an orbit theorem and to apply it to obtain a result that can be regarded as a significant step towards the solution of Gluck’s conjecture on large character degrees of finite solvable groups.
Characters, bilinear forms and solvable groups
2016
Abstract We prove a number of results about the ordinary and Brauer characters of finite solvable groups in characteristic 2, by defining and using the concept of the extended nucleus of a real irreducible character. In particular we show that the Isaacs canonical lift of a real irreducible Brauer character has Frobenius–Schur indicator +1. We also show that the principal indecomposable module corresponding to a real irreducible Brauer character affords a quadratic geometry if and only if each extended nucleus is a split extension of a nucleus.
Permutable subnormal subgroups of finite groups
2009
The aim of this paper is to prove certain characterization theorems for groups in which permutability is a transitive relation, the so called PT -groups. In particular, it is shown that the finite solvable PT -groups, the finite solvable groups in which every subnormal subgroup of defect two is permutable, the finite solvable groups in which every normal subgroup is permutable sensitive, and the finite solvable groups in which conjugatepermutability and permutability coincide are all one and the same class. This follows from our main result which says that the finite modular p-groups, p a prime, are those p-groups in which every subnormal subgroup of defect two is permutable or, equivalentl…
On the WGSC Property in Some Classes of Groups
2009
The property of quasi-simple filtration (or qsf) for groups has been introduced in literature more than 10 years ago by S. Brick. This is equivalent, for groups, to the weak geometric simple connectivity (or wgsc). The main interest of these notions is that there is still not known whether all finitely presented groups are wgsc (qsf) or not. The present note deals with the wgsc property for solvable groups and generalized FC-groups. Moreover, a relation between the almost-convexity condition and the Tucker property, which is related to the wgsc property, has been considered for 3-manifold groups.
Characters of p′-Degree of p-Solvable Groups
2001
Conjugacy classes, characters and products of elements
2019
Recently, Baumslag and Wiegold proved that a finite group $G$ is nilpotent if and only if $o(xy)=o(x)o(y)$ for every $x,y\in G$ of coprime order. Motivated by this result, we study the groups with the property that $(xy)^G=x^Gy^G$ and those with the property that $\chi(xy)=\chi(x)\chi(y)$ for every complex irreducible character $\chi$ of $G$ and every nontrivial $x, y \in G$ of pairwise coprime order. We also consider several ways of weakening the hypothesis on $x$ and $y$. While the result of Baumslag and Wiegold is completely elementary, some of our arguments here depend on (parts of) the classification of finite simple groups.
Zeros of Primitive Characters in Solvable Groups
1999
A conjecture on the number of conjugacy classes in ap-solvable group
1996
IfG is ap-solvable group, it is conjectured that k(G/O P (G) ≤ |G| p ′. The conjecture is easily obtained for solvable groups as a consequence of R. Knorr’s work on the k(GV) problem. Also, a related result is obtained: k(G/F(G)) is bounded by the index of a nilpotent injector ofG.